#History of physics upto the 18th century ###Dhalapathy Shanmugam, K. Prakash, and, P. Puviyarasan* ##Abstract Here we focus on classical physics and it’s historical evolution till the 18th century. As in any study of evolution, we find there are doldrums, ebbs, rapid flows and leap forwards. The early slave society of Greece produced concepts of democracy and discoveries in science but later stagnated. The use of iron in gangetic plain produced extensive agriculture and advancements in science, which then stagnated with the rise of caste and feudalism, while Europe also stagnated with rise of Roman empire and feudalism. Rise of Islam and over throw of clans in Arabia produced reneissance in Arabia, furthering the development of science from Greece and India. China and silk route produced finest papers, printing machines, sophisticated modern clocks. African and Arab conquest of southern Europe led to the destruction of the remnants of the Roman empire, leading to the flowering of many nationalities in Europe, giving birth to capitalism and modern science. *Keywords*: Faraday, Columb, Classical, Entrophy, kinetic energy, potential energy, thermodynamics, kepler, universe Corresponding Author : dalapathy@gmail.com ##Introduction Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology, since matter and energy are the basic constituents of the natural world. Some other domains of study—more limited in their scope—may be considered branches that have split off from physics to become sciences in their own right. Physics today may be divided loosely into classical physics and modern physics. Our focus is only to the Classical physics neither Quantum physics. ###Ancient history Elements of what became physics were drawn primarily from the fields of astronomy, optics, and mechanics, which were methodologically united through the study of geometry. These mathematical disciplines began in antiquity with the Babylonians and with Hellenistic writers such as Archimedes and Ptolemy. Ancient philosophy, meanwhile – including what was called "physics" – focused on explaining nature through ideas such as Aristotle's four types of "cause". ###Ancient Greece The move towards a rational understanding of nature began at least since the Archaic period in Greece (650–480 BCE) with the Pre-Socratic philosophers. The philosopher Thales of Miletus (7th and 6th centuries BCE), dubbed "the Father of Science" for refusing to accept various supernatural, religious or mythological explanations for natural phenomena, proclaimed that every event had a natural cause.[1] Thales also made advancements in 580 BCE by suggesting that water is the basic element, experimenting with the attraction between magnets and rubbed amber and formulating the first recorded cosmologies. Anaximander, famous for his proto-evolutionary theory, disputed Thales' ideas and proposed that rather than water, a substance called apeiron was the building block of all matter. Around 500 BCE, Heraclitus proposed that the only basic law governing the Universe was the principle of change and that nothing remains in the same state indefinitely. The early physicist Leucippus (fl. first half of the 5th century BCE) adamantly opposed the idea of direct divine intervention in the universe, proposing instead that natural phenomena had a natural cause. Leucippus and his student Democritus were the first to develop the theory of atomism, the idea that everything is composed entirely of various imperishable, indivisible elements called atoms. During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times, natural philosophy slowly developed into an exciting and contentious field of study. Aristotle (Greek: Ἀριστοτέλης, Aristotélēs) (384 – 322 BCE), a student of Plato, promoted the concept that observation of physical phenomena could ultimately lead to the discovery of the natural laws governing them. Aristotle's writings cover physics, metaphysics, poetry, theater, music, logic, rhetoric, linguistics, politics, government, ethics, biology and zoology. He wrote the first work which refers to that line of study as "Physics" – in the 4th century BCE, Aristotle founded the system known as Aristotelian physics. He attempted to explain ideas such as motion (and gravity) with the theory of four elements. Aristotle believed that all matter was made up of aether, or some combination of four elements: earth, water, air, and fire. According to Aristotle, these four terrestrial elements are capable of inter-transformation and move toward their natural place, so a stone falls downward toward the center of the cosmos, but flames rise upward toward the circumference. Eventually, Aristotelian physics became enormously popular for many centuries in Europe, informing the scientific and scholastic developments of the Middle Ages. It remained the mainstream scientific paradigm in Europe until the time of Galileo Galilei and Isaac Newton. Early in Classical Greece, knowledge that the Earth is spherical ("round") was common. Around 240 BCE, as the result of a seminal experiment, Eratosthenes (276–194 BCE) accurately estimated its circumference. In contrast to Aristotle's geocentric views, Aristarchus of Samos (Greek: Ἀρίσταρχος; c.310 – c.230 BCE) presented an explicit argument for a heliocentric model of the Solar system, i.e. for placing the Sun, not the Earth, at its centre. Seleucus of Seleucia, a follower of Aristarchus' heliocentric theory, stated that the Earth rotated around its own axis, which, in turn, revolved around the Sun. Though the arguments he used were lost, Plutarch stated that Seleucus was the first to prove the heliocentric system through reasoning. In the 3rd century BCE, the Greek mathematician Archimedes of Syracuse (Greek: Ἀρχιμήδης (287–212 BCE) – generally considered to be the greatest mathematician of antiquity and one of the greatest of all time – laid the foundations of hydrostatics, statics and calculated the underlying mathematics of the lever. A leading scientist of classical antiquity, Archimedes also developed elaborate systems of pulleys to move large objects with a minimum of effort. The Archimedes' screw underpins modern hydroengineering, and his machines of war helped to hold back the armies of Rome in the First Punic War. Archimedes even tore apart the arguments of Aristotle and his metaphysics, pointing out that it was impossible to separate mathematics and nature and proved it by converting mathematical theories into practical inventions. Furthermore, in his work On Floating Bodies, around 250 BCE, Archimedes developed the law of buoyancy, also known as Archimedes' principle. In mathematics, Archimedes used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, and gave a remarkably accurate approximation of pi. He also defined the spiral bearing his name, formulae for the volumes of surfaces of revolution and an ingenious system for expressing very large numbers. He also developed the principles of equilibrium states and centers of gravity, ideas that would influence the well known scholars, Galileo, and Newton. Hipparchus (190–120 BCE), focusing on astronomy and mathematics, used sophisticated geometrical techniques to map the motion of the stars and planets, even predicting the times that Solar eclipses would happen. In addition, he added calculations of the distance of the Sun and Moon from the Earth, based upon his improvements to the observational instruments used at that time. Another of the most famous of the early physicists was Ptolemy (90–168 CE), one of the leading minds during the time of the Roman Empire. Ptolemy was the author of several scientific treatises, at least three of which were of continuing importance to later Islamic and European science. The first is the astronomical treatise now known as the Almagest (in Greek, Ἡ Μεγάλη Σύνταξις, "The Great Treatise", originally Μαθηματικὴ Σύνταξις, "Mathematical Treatise"). The second is the Geography, which is a thorough discussion of the geographic knowledge of the Greco-Roman world. Much of the accumulated knowledge of the ancient world was lost. Even of the works of the better known thinkers, few fragments survived. Although he wrote at least fourteen books, almost nothing of Hipparchus' direct work survived. ###India and China In Indian philosophy, Maharishi Kanada was the first to systematically develop a theory of atomism around 200 BCE[3] though some authors have allotted him an earlier era in the 6th century BCE.[4][5] It was further elaborated by the Buddhist atomists Dharmakirti and Dignāga during the 1st millennium CE.[6] Pakudha Kaccayana, a 6th-century BCE Indian philosopher and contemporary of Gautama Buddha, had also propounded ideas about the atomic constitution of the material world. These philosophers believed that other elements (except ether) were physically palpable and hence comprised minuscule particles of matter. The last minuscule particle of matter that could not be subdivided further was termed Parmanu. These philosophers considered the atom to be indestructible and hence eternal. The Buddhists thought atoms to be minute objects unable to be seen to the naked eye that come into being and vanish in an instant. The Vaisheshika school of philosophers believed that an atom was a mere point in space. It was also first to depict relations between motion and force applied. Indian theories about the atom are greatly abstract and enmeshed in philosophy as they were based on logic and not on personal experience or experimentation. In Indian astronomy, Aryabhata's Aryabhatiya (499 CE) proposed the Earth's rotation, while Nilakantha Somayaji (1444–1544) of the Kerala school of astronomy and mathematics proposed a semi-heliocentric model resembling the Tychonic system. The study of magnetism in Ancient China dates back to the 4th century BCE. (in the Book of the Devil Valley Master),[7] A main contributor to this field was Shen Kuo (1031–1095), a polymath and statesman who was the first to describe the magnetic-needle compass used for navigation, as well as establishing the concept of true north. In optics, Shen Kuo independently developed a camera obscura.[8] ###Islamic world In the 7th to 15th centuries, scientific progress occurred in the Muslim world. Many classic works in Indian, Assyrian, Sassanian (Persian) and Greek, including the works of Aristotle, were translated into Arabic.[9] Important contributions were made by Ibn al-Haytham (965–1040), an Arab scientist, considered to be a founder of modern optics. Ptolemy and Aristotle theorised that light either shone from the eye to illuminate objects or that "forms" emanated from objects themselves, whereas al-Haytham (known by the Latin name "Alhazen") suggested that light travels to the eye in rays from different points on an object. The works of Ibn al-Haytham and Abū Rayhān Bīrūnī (973–1050), a Persian scientist, eventually passed on to Western Europe where they were studied by scholars such as Roger Bacon and Witelo.[10] Ibn al-Haytham and Biruni were early proponents of the scientific method. Ibn al-Haytham is considered to be the "father of the modern scientific method" due to his emphasis on experimental data and reproducibility of its results.[11][12] The earliest methodical approach to experiments in the modern sense is visible in the works of Ibn al-Haytham, who introduced an inductive-experimental method for achieving results.[13] Bīrūnī introduced early scientific methods for several different fields of inquiry during the 1020s and 1030s,[14] including an early experimental method for mechanics.[note 2] Biruni's methodology resembled the modern scientific method, particularly in his emphasis on repeated experimentation.[15] Ibn Sīnā (980–1037), known as "Avicenna", was a polymath from Bukhara (in present-day Uzbekistan) responsible for important contributions to physics, optics, philosophy and medicine. He published his theory of motion in Book of Healing (1020), where he argued that an impetus is imparted to a projectile by the thrower, and believed that it was a temporary virtue that would decline even in a vacuum. He viewed it as persistent, requiring external forces such as air resistance to dissipate it.[16][17][18] Ibn Sina made a distinction between 'force' and 'inclination' (called "mayl"), and argued that an object gained mayl when the object is in opposition to its natural motion. He concluded that continuation of motion is attributed to the inclination that is transferred to the object, and that object will be in motion until the mayl is spent. He also claimed that projectile in a vacuum would not stop unless it is acted upon. This conception of motion is consistent with Newton's first law of motion, inertia, which states that an object in motion will stay in motion unless it is acted on by an external force.[19] This idea which dissented from the Aristotelian view was later described as "impetus" by John Buridan, who was influenced by Ibn Sina's Book of Healing.[20] Omar Khayyám (1048–1131), a Persian scientist, calculated the length of a solar year and was only out by a fraction of a second when compared to our modern day calculations. Hibat Allah Abu'l-Barakat al-Baghdaadi (c. 1080-1165) adopted and modified Ibn Sina's theory on projectile motion. In his Kitab al-Mu'tabar, Abu'l-Barakat stated that the mover imparts a violent inclination (mayl qasri) on the moved and that this diminishes as the moving object distances itself from the mover.[21] He also proposed an explanation of the acceleration of falling bodies by the accumulation of successive increments of power with successive increments of velocity.[22] According to Shlomo Pines, al-Baghdaadi's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion], [and is thus an] anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration]."[23] Jean Buridan and Albert of Saxony later referred to Abu'l-Barakat in explaining that the acceleration of a falling body is a result of its increasing impetus.[21] Ibn Bajjah (c. 1085–1138), known as "Avempace" in Europe, proposed that for every force there is always a reaction force. While he did not specify that these forces be equal, it was a precursor to Newton's third law of motion which states that for every action there is an equal and opposite reaction.[24] Ibn Bajjah was a critic of Ptolemy and he worked on creating a new theory of velocity to replace the one theorized by Aristotle. Two future philosophers supported the theories Avempace created, known as Avempacean dynamics. These philosophers were Thomas Aquinas, a Catholic priest, and John Duns Scotus.[25] Galileo went on to adopt Avempace's formula "that the velocity of a given object is the difference of the motive power of that object and the resistance of the medium of motion".[25] Nasir al-Din al-Tusi (1201–1274), a Persian astronomer and mathematician who died in Baghdad, authored the Treasury of Astronomy, a remarkably accurate table of planetary movements that reformed the existing planetary model of Roman astronomer Ptolemy by describing a uniform circular motion of all planets in their orbits. Copernicus later drew heavily on the work of al-Din al-Tusi and his students, but without acknowledgment.[26] The gradual chipping away of the Ptolemaic system paved the way for the revolutionary idea that the Earth actually orbited the Sun (heliocentrism). ###Medieval Europe Awareness of ancient works re-entered the West through translations from Arabic to Latin. Their re-introduction, combined with Judeo-Islamic theological commentaries, had a great influence on Medieval philosophers such as Thomas Aquinas. Scholastic European scholars, who sought to reconcile the philosophy of the ancient classical philosophers with Christian theology, proclaimed Aristotle the greatest thinker of the ancient world. In cases where they didn't directly contradict the Bible, Aristotelian physics became the foundation for the physical explanations of the European Churches. Quantification became a core element of medieval physics.[27] Based on Aristotelian physics, Scholastic physics described things as moving according to their essential nature. Celestial objects were described as moving in circles, because perfect circular motion was considered an innate property of objects that existed in the uncorrupted realm of the celestial spheres. The theory of impetus, the ancestor to the concepts of inertia and momentum, was developed along similar lines by medieval philosophers such as John Philoponus and Jean Buridan. Motions below the lunar sphere were seen as imperfect, and thus could not be expected to exhibit consistent motion. More idealized motion in the "sublunary" realm could only be achieved through artifice, and prior to the 17th century, many did not view artificial experiments as a valid means of learning about the natural world. Physical explanations in the sublunary realm revolved around tendencies. Stones contained the element earth, and earthly objects tended to move in a straight line toward the centre of the earth (and the universe in the Aristotelian geocentric view) unless otherwise prevented from doing so.[28] ##Scientific revolution During the 16th and 17th centuries, a large advancement of scientific progress known as the Scientific revolution took place in Europe. Dissatisfaction with older philosophical approaches had begun earlier and had produced other changes in society, such as the Protestant Reformation, but the revolution in science began when natural philosophers began to mount a sustained attack on the Scholastic philosophical programme and supposed that mathematical descriptive schemes adopted from such fields as mechanics and astronomy could actually yield universally valid characterizations of motion and other concepts. ###Nicolaus Copernicus A breakthrough in astronomy was made by Polish astronomer Nicolaus Copernicus (1473–1543) when, in 1543, he gave strong arguments for the heliocentric model of the Solar system, ostensibly as a means to render tables charting planetary motion more accurate and to simplify their production. In heliocentric models of the Solar system, the Earth orbits the Sun along with other bodies in Earth's galaxy, a contradiction according to the Greek-Egyptian astronomer Ptolemy (2nd century CE; see above), whose system placed the Earth at the center of the Universe and had been accepted for over 1,400 years. The Greek astronomer Aristarchus of Samos (c.310 – c.230 BCE) had suggested that the Earth revolves around the Sun, but Copernicus' reasoning led to lasting general acceptance of this "revolutionary" idea. Copernicus' book presenting the theory (De revolutionibus orbium coelestium, "On the Revolutions of the Celestial Spheres") was published just before his death in 1543 and, as it is now generally considered to mark the beginning of modern astronomy, is also considered to mark the beginning of the Scientific revolution. Copernicus' new perspective, along with the accurate observations made by Tycho Brahe, enabled German astronomer Johannes Kepler (1571–1630) to formulate his laws regarding planetary motion that remain in use today. ###Kepler's laws of planetary motion In astronomy, **Kepler's laws of planetary motion** are three scientific laws describing the motion of planets around the Sun, published by Johannes Kepler between 1609 and 1619. These improved the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The laws state that: 1. The orbit of a planet is an ellipse with the Sun at one of the two foci. 2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. 3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The second law helps to establish that when a planet is closer to the Sun, it travels faster. The third law expresses that the farther a planet is from the Sun, the longer its orbit, and vice versa. Isaac Newton showed in 1687 that relationships like Kepler's would apply in the Solar System to a good approximation, as a consequence of his own laws of motion and law of universal gravitation. ###Galileo Galilei The Italian mathematician, astronomer, and physicist Galileo Galilei (1564–1642) was the central figure in the Scientific revolution and famous for his support for Copernicanism, his astronomical discoveries, empirical experiments and his improvement of the telescope. As a mathematician, Galileo's role in the university culture of his era was subordinated to the three major topics of study: law, medicine, and theology (which was closely allied to philosophy). Galileo, however, felt that the descriptive content of the technical disciplines warranted philosophical interest, particularly because mathematical analysis of astronomical observations – notably, Copernicus' analysis of the relative motions of the Sun, Earth, Moon, and planets – indicated that philosophers' statements about the nature of the universe could be shown to be in error. Galileo also performed mechanical experiments, insisting that motion itself – regardless of whether it was produced "naturally" or "artificially" (i.e. deliberately) – had universally consistent characteristics that could be described mathematically. Galileo's early studies at the University of Pisa were in medicine, but he was soon drawn to mathematics and physics. At 19, he discovered (and, subsequently, verified) the isochronal nature of the pendulum when, using his pulse, he timed the oscillations of a swinging lamp in Pisa's cathedral and found that it remained the same for each swing regardless of the swing's amplitude. He soon became known through his invention of a hydrostatic balance and for his treatise on the center of gravity of solid bodies. While teaching at the University of Pisa (1589–92), he initiated his experiments concerning the laws of bodies in motion that brought results so contradictory to the accepted teachings of Aristotle that strong antagonism was aroused. He found that bodies do not fall with velocities proportional to their weights. The famous story in which Galileo is said to have dropped weights from the Leaning Tower of Pisa is apocryphal, but he did find that the path of a projectile is a parabola and is credited with conclusions that anticipated Newton's laws of motion (e.g. the notion of inertia). Galileo has been called the "father of modern observational astronomy",[29] the "father of modern physics",[30] the "father of science",[30] and "the father of modern science".[31] According to Stephen Hawking, "Galileo, perhaps more than any other single person, was responsible for the birth of modern science."[32] As religious orthodoxy decreed a geocentric or Tychonic understanding of the Solar system, Galileo's support for heliocentrism provoked controversy and he was tried by the Inquisition. Found "vehemently suspect of heresy", he was forced to recant and spent the rest of his life under house arrest. The contributions that Galileo made to observational astronomy include the telescopic confirmation of the phases of Venus; his discovery, in 1609, of Jupiter's four largest moons (subsequently given the collective name of the "Galilean moons"); and the observation and analysis of sunspots. Galileo also pursued applied science and technology, inventing, among other instruments, a military compass. His discovery of the Jovian moons was published in 1610 and enabled him to obtain the position of mathematician and philosopher to the Medici court. As such, he was expected to engage in debates with philosophers in the Aristotelian tradition and received a large audience for his own publications such as the Discourses and Mathematical Demonstrations Concerning Two New Sciences (published abroad following his arrest for the publication of Dialogue Concerning the Two Chief World Systems) and The Assayer.[33][34] Galileo's interest in experimenting with and formulating mathematical descriptions of motion established experimentation as an integral part of natural philosophy. This tradition, combining with the non-mathematical emphasis on the collection of "experimental histories" by philosophical reformists such as William Gilbert and Francis Bacon, drew a significant following in the years leading up to and following Galileo's death, including Evangelista Torricelli and the participants in the Accademia del Cimento in Italy; Marin Mersenne and Blaise Pascal in France; Christiaan Huygens in the Netherlands; and Robert Hooke and Robert Boyle in England. ###René Descartes The French philosopher René Descartes (1596–1650) was well-connected to, and influential within, the experimental philosophy networks of the day. Descartes had a more ambitious agenda, however, which was geared toward replacing the Scholastic philosophical tradition altogether. Questioning the reality interpreted through the senses, Descartes sought to re-establish philosophical explanatory schemes by reducing all perceived phenomena to being attributable to the motion of an invisible sea of "corpuscles". (Notably, he reserved human thought and God from his scheme, holding these to be separate from the physical universe). In proposing this philosophical framework, Descartes supposed that different kinds of motion, such as that of planets versus that of terrestrial objects, were not fundamentally different, but were merely different manifestations of an endless chain of corpuscular motions obeying universal principles. Particularly influential were his explanations for circular astronomical motions in terms of the vortex motion of corpuscles in space (Descartes argued, in accord with the beliefs, if not the methods, of the Scholastics, that a vacuum could not exist), and his explanation of gravity in terms of corpuscles pushing objects downward.[35][36][37] Descartes, like Galileo, was convinced of the importance of mathematical explanation, and he and his followers were key figures in the development of mathematics and geometry in the 17th century. Cartesian mathematical descriptions of motion held that all mathematical formulations had to be justifiable in terms of direct physical action, a position held by Huygens and the German philosopher Gottfried Leibniz, who, while following in the Cartesian tradition, developed his own philosophical alternative to Scholasticism, which he outlined in his 1714 work, The Monadology. Descartes has been dubbed the 'Father of Modern Philosophy', and much subsequent Western philosophy is a response to his writings, which are studied closely to this day. In particular, his Meditations on First Philosophy continues to be a standard text at most university philosophy departments. Descartes' influence in mathematics is equally apparent; the Cartesian coordinate system — allowing algebraic equations to be expressed as geometric shapes in a two-dimensional coordinate system — was named after him. He is credited as the father of analytical geometry, the bridge between algebra and geometry, important to the discovery of calculus and analysis. ###Isaac Newton The late 17th and early 18th centuries saw the achievements of the greatest figure of the Scientific revolution: Cambridge University physicist and mathematician Sir Isaac Newton (1642-1727), considered by many to be the greatest and most influential scientist who ever lived. Newton, a fellow of the Royal Society of England, combined his own discoveries in mechanics and astronomy to earlier ones to create a single system for describing the workings of the universe. Newton formulated three laws of motion which formulated the relationship between motion and objects and also the law of universal gravitation, the latter of which could be used to explain the behavior not only of falling bodies on the earth but also planets and other celestial bodies. To arrive at his results, Newton invented one form of an entirely new branch of mathematics: calculus (also invented independently by Gottfried Leibniz), which was to become an essential tool in much of the later development in most branches of physics. Newton's findings were set forth in his Philosophiæ Naturalis Principia Mathematica ("Mathematical Principles of Natural Philosophy"), the publication of which in 1687 marked the beginning of the modern period of mechanics and astronomy. Newton was able to refute the Cartesian mechanical tradition that all motions should be explained with respect to the immediate force exerted by corpuscles. Using his three laws of motion and law of universal gravitation, Newton removed the idea that objects followed paths determined by natural shapes and instead demonstrated that not only regularly observed paths, but all the future motions of any body could be deduced mathematically based on knowledge of their existing motion, their mass, and the forces acting upon them. However, observed celestial motions did not precisely conform to a Newtonian treatment, and Newton, who was also deeply interested in theology, imagined that God intervened to ensure the continued stability of the solar system. Newton's principles (but not his mathematical treatments) proved controversial with Continental philosophers, who found his lack of metaphysical explanation for movement and gravitation philosophically unacceptable. Beginning around 1700, a bitter rift opened between the Continental and British philosophical traditions, which were stoked by heated, ongoing, and viciously personal disputes between the followers of Newton and Leibniz concerning priority over the analytical techniques of calculus, which each had developed independently. Initially, the Cartesian and Leibnizian traditions prevailed on the Continent (leading to the dominance of the Leibnizian calculus notation everywhere except Britain). Newton himself remained privately disturbed at the lack of a philosophical understanding of gravitation while insisting in his writings that none was necessary to infer its reality. As the 18th century progressed, Continental natural philosophers increasingly accepted the Newtonians' willingness to forgo ontological metaphysical explanations for mathematically described motions.[38][39][40] Newton built the first functioning reflecting telescope[41] and developed a theory of color, published in Opticks, based on the observation that a prism decomposes white light into the many colours forming the visible spectrum. While Newton explained light as being composed of tiny particles, a rival theory of light which explained its behavior in terms of waves was presented in 1690 by Christiaan Huygens. However, the belief in the mechanistic philosophy coupled with Newton's reputation meant that the wave theory saw relatively little support until the 19th century. Newton also formulated an empirical law of cooling, studied the speed of sound, investigated power series, demonstrated the generalised binomial theorem and developed a method for approximating the roots of a function. His work on infinite series was inspired by Simon Stevin's decimals.[42] Most importantly, Newton showed that the motions of objects on Earth and of celestial bodies are governed by the same set of natural laws, which were neither capricious nor malevolent. By demonstrating the consistency between Kepler's laws of planetary motion and his own theory of gravitation, Newton also removed the last doubts about heliocentrism. By bringing together all the ideas set forth during the Scientific revolution, Newton effectively established the foundation for modern society in mathematics and science. ###Newton’s Laws Newton's laws of motion are three physical laws that, together, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. More precisely, the first law defines the force qualitatively, the second law offers a quantitative measure of the force, and the third asserts that a single isolated force doesn't exist. These three laws have been expressed in several ways, over nearly three centuries,[a] and can be summarised as follows: ###First law In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force. $$ \sum \mathbf{F} = 0\; \Leftrightarrow\; \frac{\mathrm{d} \mathbf{v} }{\mathrm{d}t} = 0.$$ ###Second law In an inertial frame of reference, the vector sum of the forces $F$ on an object is equal to the mass m of that object multiplied by the acceleration $a$ of the object: $F = ma$. (It is assumed here that the mass $m$ is constant (see below) $$ \mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\mathbf v)}{\mathrm{d}t}. $$ $$ \mathbf{F} = m\,\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = m\mathbf{a}, $$ ###Third law When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body. $$ \mathbf{F}_A = \mathbf{F}_B $$ Newton's laws are applied to objects which are idealised as single point masses,[9] in the sense that the size and shape of the object's body are neglected to focus on its motion more easily. This can be done when the object is small compared to the distances involved in its analysis, or the deformation and rotation of the body are of no importance. In this way, even a planet can be idealised as a particle for analysis of its orbital motion around a star. In their original form, Newton's laws of motion are not adequate to characterise the motion of rigid bodies and deformable bodies. Leonhard Euler in 1750 introduced a generalisation of Newton's laws of motion for rigid bodies called Euler's laws of motion, later applied as well for deformable bodies assumed as a continuum. If a body is represented as an assemblage of discrete particles, each governed by Newton's laws of motion, then Euler's laws can be derived from Newton's laws. Euler's laws can, however, be taken as axioms describing the laws of motion for extended bodies, independently of any particle structure. Newton's laws hold only with respect to a certain set of frames of reference called Newtonian or inertial reference frames. Some authors interpret the first law as defining what an inertial reference frame is; from this point of view, the second law holds only when the observation is made from an inertial reference frame, and therefore the first law cannot be proved as a special case of the second. Other authors do treat the first law as a corollary of the second. The explicit concept of an inertial frame of reference was not developed until long after Newton's death. In the given interpretation mass, acceleration, momentum, and (most importantly) force are assumed to be externally defined quantities. This is the most common, but not the only interpretation of the way one can consider the laws to be a definition of these quantities. Newtonian mechanics has been superseded by special relativity, but it is still useful as an approximation when the speeds involved are much slower than the speed of light. ###Other achievements Other branches of physics also received attention during the period of the Scientific revolution. William Gilbert, court physician to Queen Elizabeth I, published an important work on magnetism in 1600, describing how the earth itself behaves like a giant magnet. Robert Boyle (1627–91) studied the behavior of gases enclosed in a chamber and formulated the gas law named for him; he also contributed to physiology and to the founding of modern chemistry. Another important factor in the scientific revolution was the rise of learned societies and academies in various countries. The earliest of these were in Italy and Germany and were short-lived. More influential were the Royal Society of England (1660) and the Academy of Sciences in France (1666). The former was a private institution in London and included such scientists as John Wallis, William Brouncker, Thomas Sydenham, John Mayow, and Christopher Wren (who contributed not only to architecture but also to astronomy and anatomy); the latter, in Paris, was a government institution and included as a foreign member the Dutchman Huygens. In the 18th century, important royal academies were established at Berlin (1700) and at St. Petersburg (1724). The societies and academies provided the principal opportunities for the publication and discussion of scientific results during and after the scientific revolution. In 1690, James Bernoulli showed that the cycloid is the solution to the tautochrone problem; and the following year, in 1691, Johann Bernoulli showed that a chain freely suspended from two points will form a catenary, the curve with the lowest possible center of gravity available to any chain hung between two fixed points. He then showed, in 1696, that the cycloid is the solution to the brachistochrone problem. ###Early thermodynamics A precursor of the engine was designed by the German scientist Otto von Guericke who, in 1650, designed and built the world's first vacuum pump and created the world's first ever vacuum known as the Magdeburg hemispheres experiment. He was driven to make a vacuum to disprove Aristotle's long-held supposition that 'Nature abhors a vacuum'. Shortly thereafter, Irish physicist and chemist Boyle had learned of Guericke's designs and in 1656, in coordination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed the pressure-volume correlation for a gas: PV = k, where P is pressure, V is volume and k is a constant: this relationship is known as Boyle's Law. In that time, air was assumed to be a system of motionless particles, and not interpreted as a system of moving molecules. The concept of thermal motion came two centuries later. Therefore, Boyle's publication in 1660 speaks about a mechanical concept: the air spring.[43] Later, after the invention of the thermometer, the property temperature could be quantified. This tool gave Gay-Lussac the opportunity to derive his law, which led shortly later to the ideal gas law. But, already before the establishment of the ideal gas law, an associate of Boyle's named Denis Papin built in 1679 a bone digester, which is a closed vessel with a tightly fitting lid that confines steam until a high pressure is generated. Later designs implemented a steam release valve to keep the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and cylinder engine. He did not however follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer Thomas Savery built the first engine. Although these early engines were crude and inefficient, they attracted the attention of the leading scientists of the time. Hence, prior to 1698 and the invention of the Savery Engine, horses were used to power pulleys, attached to buckets, which lifted water out of flooded salt mines in England. In the years to follow, more variations of steam engines were built, such as the Newcomen Engine, and later the Watt Engine. In time, these early engines would eventually be utilized in place of horses. Thus, each engine began to be associated with a certain amount of "horse power" depending upon how many horses it had replaced. The main problem with these first engines was that they were slow and clumsy, converting less than 2% of the input fuel into useful work. In other words, large quantities of coal (or wood) had to be burned to yield only a small fraction of work output. Hence the need for a new science of engine dynamics was born. ##18th-century developments During the 18th century, the mechanics founded by Newton was developed by several scientists as more mathematicians learned calculus and elaborated upon its initial formulation. The application of mathematical analysis to problems of motion was known as rational mechanics, or mixed mathematics (and was later termed classical mechanics). ###Mechanics In 1714, Brook Taylor derived the fundamental frequency of a stretched vibrating string in terms of its tension and mass per unit length by solving a differential equation. The Swiss mathematician Daniel Bernoulli (1700–1782) made important mathematical studies of the behavior of gases, anticipating the kinetic theory of gases developed more than a century later, and has been referred to as the first mathematical physicist.[44] In 1733, Daniel Bernoulli derived the fundamental frequency and harmonics of a hanging chain by solving a differential equation. In 1734, Bernoulli solved the differential equation for the vibrations of an elastic bar clamped at one end. Bernoulli's treatment of fluid dynamics and his examination of fluid flow was introduced in his 1738 work Hydrodynamica. Rational mechanics dealt primarily with the development of elaborate mathematical treatments of observed motions, using Newtonian principles as a basis, and emphasized improving the tractability of complex calculations and developing of legitimate means of analytical approximation. A representative contemporary textbook was published by Johann Baptiste Horvath. By the end of the century analytical treatments were rigorous enough to verify the stability of the solar system solely on the basis of Newton's laws without reference to divine intervention—even as deterministic treatments of systems as simple as the three body problem in gravitation remained intractable.[45] In 1705, Edmond Halley predicted the periodicity of Halley's Comet, William Herschel discovered Uranus in 1781, and Henry Cavendish measured the gravitational constant and determined the mass of the Earth in 1798. In 1783, John Michell suggested that some objects might be so massive that not even light could escape from them. In 1739, Leonhard Euler solved the ordinary differential equation for a forced harmonic oscillator and noticed the resonance phenomenon. In 1742, Colin Maclaurin discovered his uniformly rotating self-gravitating spheroids. In 1742, Benjamin Robins published his New Principles in Gunnery, establishing the science of aerodynamics. British work, carried on by mathematicians such as Taylor and Maclaurin, fell behind Continental developments as the century progressed. Meanwhile, work flourished at scientific academies on the Continent, led by such mathematicians as Bernoulli, Euler, Lagrange, Laplace, and Legendre. In 1743, Jean le Rond d'Alembert published his Traite de Dynamique, in which he introduced the concept of generalized forces for accelerating systems and systems with constraints, and applied the new idea of virtual work to solve dynamical problem, now known as D'Alembert's principle, as a rival to Newton's second law of motion. In 1747, Pierre Louis Maupertuis applied minimum principles to mechanics. In 1759, Euler solved the partial differential equation for the vibration of a rectangular drum. In 1764, Euler examined the partial differential equation for the vibration of a circular drum and found one of the Bessel function solutions. In 1776, John Smeaton published a paper on experiments relating power, work, momentum and kinetic energy, and supporting the conservation of energy. In 1788, Joseph Louis Lagrange presented Lagrange's equations of motion in ***Mécanique Analytique***, in which the whole of mechanics was organized around the principle of virtual work. In 1789, Antoine Lavoisier states the law of conservation of mass. The rational mechanics developed in the 18th century received a brilliant exposition in both Lagrange's 1788 work and the Celestial Mechanics (1799–1825) of Pierre-Simon Laplace. ##Thermodynamics During the 18th century, thermodynamics was developed through the theories of weightless "imponderable fluids", such as heat ("caloric"), electricity, and phlogiston (which was rapidly overthrown as a concept following Lavoisier's identification of oxygen gas late in the century). Assuming that these concepts were real fluids, their flow could be traced through a mechanical apparatus or chemical reactions. This tradition of experimentation led to the development of new kinds of experimental apparatus, such as the Leyden Jar; and new kinds of measuring instruments, such as the calorimeter, and improved versions of old ones, such as the thermometer. Experiments also produced new concepts, such as the University of Glasgow experimenter Joseph Black's notion of latent heat and Philadelphia intellectual Benjamin Franklin's characterization of electrical fluid as flowing between places of excess and deficit (a concept later reinterpreted in terms of positive and negative charges). Franklin also showed that lightning is electricity in 1752. The accepted theory of heat in the 18th century viewed it as a kind of fluid, called caloric; although this theory was later shown to be erroneous, a number of scientists adhering to it nevertheless made important discoveries useful in developing the modern theory, including Joseph Black (1728–99) and Henry Cavendish (1731–1810). Opposed to this caloric theory, which had been developed mainly by the chemists, was the less accepted theory dating from Newton's time that heat is due to the motions of the particles of a substance. This mechanical theory gained support in 1798 from the cannon-boring experiments of Count Rumford (Benjamin Thompson), who found a direct relationship between heat and mechanical energy. While it was recognized early in the 18th century that finding absolute theories of electrostatic and magnetic force akin to Newton's principles of motion would be an important achievement, none were forthcoming. This impossibility only slowly disappeared as experimental practice became more widespread and more refined in the early years of the 19th century in places such as the newly established Royal Institution in London. Meanwhile, the analytical methods of rational mechanics began to be applied to experimental phenomena, most influentially with the French mathematician Joseph Fourier's analytical treatment of the flow of heat, as published in 1822.[46][47][48] Joseph Priestley proposed an electrical inverse-square law in 1767, and Charles-Augustin de Coulomb introduced the inverse-square law of electrostatics in 1798. ###Laws of thermodynamics The laws of thermodynamics define physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems at thermodynamic equilibrium. The laws describe the relationships between these quantities, and form a basis of precluding the possibility of certain phenomena, such as perpetual motion. In addition to their use in thermodynamics, they are important fundamental laws of physics in general, and are applicable in other natural sciences. Thermodynamics has traditionally recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law.[1][2][3][4][5]. In addition, after the first three laws were established, it was recognized that another law, more fundamental to all three, could be stated, which was named the zeroth law. The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature: If two systems are each in thermal equilibrium with a third system, they are in thermal equilibrium with each other. The first law of thermodynamics: When energy passes, as work, as heat, or with matter, into or out of a system, the system's internal energy changes in accord with the law of conservation of energy. Equivalently, perpetual motion machines of the first kind (machines that produce work with no energy input) are impossible. The second law of thermodynamics: In a natural thermodynamic process, the sum of the entropies of the interacting thermodynamic systems increases. Equivalently, perpetual motion machines of the second kind (machines that spontaneously convert thermal energy into mechanical work) are impossible. The third law of thermodynamics: The entropy of a system approaches a constant value as the temperature approaches absolute zero.[2] With the exception of non-crystalline solids (glasses) the entropy of a system at absolute zero is typically close to zero. Additional laws have been suggested, but none of them achieved the generality of the four accepted laws, and are not discussed in standard textbooks. At the end of the century, the members of the French Academy of Sciences had attained clear dominance in the field.[40][49][50][51] At the same time, the experimental tradition established by Galileo and his followers persisted. The Royal Society and the French Academy of Sciences were major centers for the performance and reporting of experimental work. Experiments in mechanics, optics, magnetism, static electricity, chemistry, and physiology were not clearly distinguished from each other during the 18th century, but significant differences in explanatory schemes and, thus, experiment design were emerging. Chemical experimenters, for instance, defied attempts to enforce a scheme of abstract Newtonian forces onto chemical affiliations, and instead focused on the isolation and classification of chemical substances and reactions.[52] ###19th century In 1800, Alessandro Volta invented the electric battery (known as the voltaic pile) and thus improved the way electric currents could also be studied. A year later, Thomas Young demonstrated the wave nature of light—which received strong experimental support from the work of Augustin-Jean Fresnel—and the principle of interference. In 1813, Peter Ewart supported the idea of the conservation of energy in his paper On the measure of moving force. In 1820, Hans Christian Ørsted found that a current-carrying conductor gives rise to a magnetic force surrounding it, and within a week after Ørsted's discovery reached France, André-Marie Ampère discovered that two parallel electric currents will exert forces on each other. In 1821, William Hamilton began his analysis of Hamilton's characteristic function. In 1821, Michael Faraday built an electricity-powered motor, while Georg Ohm stated his law of electrical resistance in 1826, expressing the relationship between voltage, current, and resistance in an electric circuit. A year later, botanist Robert Brown discovered Brownian motion: pollen grains in water undergoing movement resulting from their bombardment by the fast-moving atoms or molecules in the liquid. In 1829, Gaspard Coriolis introduced the terms of work (force times distance) and kinetic energy with the meanings they have today. In 1831, Faraday (and independently Joseph Henry) discovered the reverse effect, the production of an electric potential or current through magnetism – known as electromagnetic induction; these two discoveries are the basis of the electric motor and the electric generator, respectively. In 1834, Carl Jacobi discovered his uniformly rotating self-gravitating ellipsoids (the Jacobi ellipsoid). In 1834, John Russell observed a nondecaying solitary water wave (soliton) in the Union Canal near Edinburgh and used a water tank to study the dependence of solitary water wave velocities on wave amplitude and water depth. In 1835, William Hamilton stated Hamilton's canonical equations of motion. In the same year, Gaspard Coriolis examined theoretically the mechanical efficiency of waterwheels, and deduced the Coriolis effect. In 1841, Julius Robert von Mayer, an amateur scientist, wrote a paper on the conservation of energy but his lack of academic training led to its rejection. In 1842, Christian Doppler proposed the Doppler effect. In 1847, Hermann von Helmholtz formally stated the law of conservation of energy. In 1851, Léon Foucault showed the Earth's rotation with a huge pendulum (Foucault pendulum). There were important advances in continuum mechanics in the first half of the century, namely formulation of laws of elasticity for solids and discovery of Navier–Stokes equations for fluids. ###Laws of thermodynamics In the 19th century, the connection between heat and mechanical energy was established quantitatively by Julius Robert von Mayer and James Prescott Joule, who measured the mechanical equivalent of heat in the 1840s. In 1849, Joule published results from his series of experiments (including the paddlewheel experiment) which show that heat is a form of energy, a fact that was accepted in the 1850s. The relation between heat and energy was important for the development of steam engines, and in 1824 the experimental and theoretical work of Sadi Carnot was published. Carnot captured some of the ideas of thermodynamics in his discussion of the efficiency of an idealized engine. Sadi Carnot's work provided a basis for the formulation of the first law of thermodynamics—a restatement of the law of conservation of energy—which was stated around 1850 by William Thomson, later known as Lord Kelvin, and Rudolf Clausius. Lord Kelvin, who had extended the concept of absolute zero from gases to all substances in 1848, drew upon the engineering theory of Lazare Carnot, Sadi Carnot, and Émile Clapeyron–as well as the experimentation of James Prescott Joule on the interchangeability of mechanical, chemical, thermal, and electrical forms of work—to formulate the first law. Kelvin and Clausius also stated the second law of thermodynamics, which was originally formulated in terms of the fact that heat does not spontaneously flow from a colder body to a hotter. Other formulations followed quickly (for example, the second law was expounded in Thomson and Peter Guthrie Tait's influential work Treatise on Natural Philosophy) and Kelvin in particular understood some of the law's general implications. The second Law was the idea that gases consist of molecules in motion had been discussed in some detail by Daniel Bernoulli in 1738, but had fallen out of favor, and was revived by Clausius in 1857. In 1850, Hippolyte Fizeau and Léon Foucault measured the speed of light in water and find that it is slower than in air, in support of the wave model of light. In 1852, Joule and Thomson demonstrated that a rapidly expanding gas cools, later named the Joule–Thomson effect or Joule–Kelvin effect. Hermann von Helmholtz puts forward the idea of the heat death of the universe in 1854, the same year that Clausius established the importance of dQ/T (Clausius's theorem) (though he did not yet name the quantity). ###Statistical mechanics (a fundamentally new approach to science) In 1859, James Clerk Maxwell discovered the distribution law of molecular velocities. Maxwell showed that electric and magnetic fields are propagated outward from their source at a speed equal to that of light and that light is one of several kinds of electromagnetic radiation, differing only in frequency and wavelength from the others. In 1859, Maxwell worked out the mathematics of the distribution of velocities of the molecules of a gas. The wave theory of light was widely accepted by the time of Maxwell's work on the electromagnetic field, and afterward the study of light and that of electricity and magnetism were closely related. In 1864 James Maxwell published his papers on a dynamical theory of the electromagnetic field, and stated that light is an electromagnetic phenomenon in the 1873 publication of Maxwell's Treatise on Electricity and Magnetism. This work drew upon theoretical work by German theoreticians such as Carl Friedrich Gauss and Wilhelm Weber. The encapsulation of heat in particulate motion, and the addition of electromagnetic forces to Newtonian dynamics established an enormously robust theoretical underpinning to physical observations. The prediction that light represented a transmission of energy in wave form through a "luminiferous ether", and the seeming confirmation of that prediction with Helmholtz student Heinrich Hertz's 1888 detection of electromagnetic radiation, was a major triumph for physical theory and raised the possibility that even more fundamental theories based on the field could soon be developed.[53][54][55][56] Experimental confirmation of Maxwell's theory was provided by Hertz, who generated and detected electric waves in 1886 and verified their properties, at the same time foreshadowing their application in radio, television, and other devices. In 1887, Heinrich Hertz discovered the photoelectric effect. Research on the electromagnetic waves began soon after, with many scientists and inventors conducting experiments on their properties. In the mid to late 1890s Guglielmo Marconi developed a radio wave based wireless telegraphy system[57] (see invention of radio). The atomic theory of matter had been proposed again in the early 19th century by the chemist John Dalton and became one of the hypotheses of the kinetic-molecular theory of gases developed by Clausius and James Clerk Maxwell to explain the laws of thermodynamics. The kinetic theory in turn led to a revolutionary approach to science, the statistical mechanics of Ludwig Boltzmann (1844–1906) and Josiah Willard Gibbs (1839–1903), which studies the statistics of microstates of a system and uses statistics to determine the state of a physical system. Interrelating the statistical likelihood of certain states of organization of these particles with the energy of those states, Clausius reinterpreted the dissipation of energy to be the statistical tendency of molecular configurations to pass toward increasingly likely, increasingly disorganized states (coining the term "entropy" to describe the disorganization of a state). The statistical versus absolute interpretations of the second law of thermodynamics set up a dispute that would last for several decades (producing arguments such as "Maxwell's demon"), and that would not be held to be definitively resolved until the behavior of atoms was firmly established in the early 20th century.[58][59] In 1902, James Jeans found the length scale required for gravitational perturbations to grow in a static nearly homogeneous medium. ##Maxwell's equations **Maxwell's** equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as _power generation_, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields.[note 1] The equations are named after the physicist and mathematician James Clerk Maxwell, who, between 1861 and 1862, published an early form of the equations that included the Lorentz force law. *Maxwell* first used the equations to propose that light is an electromagnetic ***phenomenon***. An important consequence of Maxwell's equations is that they demonstrate how fluctuating electric and magnetic fields propagate at a constant speed (c) in a vacuum. Known as electromagnetic radiation, these waves may occur at various wavelengths to produce a spectrum of light from radio waves to gamma rays. The equations have two major variants. The microscopic Maxwell equations have universal applicability but are unwieldy for common calculations. They relate the electric and magnetic fields to total charge and total current, including the complicated charges and currents in materials at the atomic scale. The "macroscopic" Maxwell equations define two new auxiliary fields that describe the large-scale behaviour of matter without having to consider atomic scale charges and quantum phenomena like spins. However, their use requires experimentally determined parameters for a phenomenological description of the electromagnetic response of materials. The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics. The covariant formulation (on spacetime rather than space and time separately) makes the compatibility of Maxwell's equations with special relativity manifest. Maxwell's equations in curved spacetime, commonly used in high energy and gravitational physics, are compatible with general relativity.[note 2] In fact, Albert Einstein developed special and general relativity to accommodate the invariant speed of light, a consequence of Maxwell's equations, with the principle that only relative movement has physical consequences. The publication of the equations marked the unification of previously described phenomena: magnetism, electricity, light and associated radiation. Since the mid-20th century, it has been understood that Maxwell's equations are not exact, but a classical limit of the fundamental theory of quantum electrodynamics. ##Conceptual descriptions ###Gauss's law Gauss's law describes the relationship between a static electric field and the electric charges that cause it: a static electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through any closed surface is proportional to the charge enclosed by the surface. Picturing the electric field by its field lines, this means the field lines begin at positive electric charges and end at negative electric charges. 'Counting' the number of field lines passing through a closed surface yields the total charge (including bound charge due to polarization of material) enclosed by that surface, divided by dielectricity of free space (the vacuum permittivity). ###Gauss's law for magnetism Gauss's law for magnetism states that there are no "magnetic charges" (also called magnetic monopoles), analogous to electric charges.Instead, the magnetic field due to materials is generated by a configuration called a dipole, and the net outflow of the magnetic field through any closed surface is zero. Magnetic dipoles are best represented as loops of current but resemble positive and negative 'magnetic charges', inseparably bound together, having no net 'magnetic charge'. In terms of field lines, this equation states that magnetic field lines neither begin nor end but make loops or extend to infinity and back. In other words, any magnetic field line that enters a given volume must somewhere exit that volume. Equivalent technical statements are that the sum total magnetic flux through any Gaussian surface is zero, or that the magnetic field is a solenoidal vector field. ###Faraday's law The Maxwell–Faraday version of Faraday's law of induction describes how a time varying magnetic field creates ("induces") an electric field. In integral form, it states that the work per unit charge required to move a charge around a closed loop equals the rate of change of the magnetic flux through the enclosed surface. The dynamically induced electric field has closed field lines similar to a magnetic field, unless superposed by a static (charge induced) electric field. This aspect of electromagnetic induction is the operating principle behind many electric generators: for example, a rotating bar magnet creates a changing magnetic field, which in turn generates an electric field in a nearby wire. ###Ampère's law with Maxwell's addition Ampère's law with Maxwell's addition states that magnetic fields can be generated in two ways: by electric current (this was the original "Ampère's law") and by changing electric fields (this was "Maxwell's addition", which he called displacement current). In integral form, the magnetic field induced around any closed loop is proportional to the electric current plus displacement current (proportional to the rate of change of electric flux) through the enclosed surface. Maxwell's addition to Ampère's law is particularly important: it makes the set of equations mathematically consistent for non static fields, without changing the laws of Ampere and Gauss for static fields. However, as a consequence, it predicts that a changing magnetic field induces an electric field and vice versa. Therefore, these equations allow self-sustaining "electromagnetic waves" to travel through empty space (see electromagnetic wave equation). The speed calculated for electromagnetic waves, which could be predicted from experiments on charges and currents,[note 3] matches the speed of light; indeed, light is one form of electromagnetic radiation (as are X-rays, radio waves, and others). Maxwell understood the connection between electromagnetic waves and light in 1861, thereby unifying the theories of electromagnetism and optics.` $$\vec{F} = m \vec{a}$$ $$ \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} = 0 $$ $$ \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} - \nabla^2 \mathbf{B} = 0 $$ ###20th century: birth of modern physics At the end of the 19th century, physics had evolved to the point at which classical mechanics could cope with highly complex problems involving macroscopic situations; thermodynamics and kinetic theory were well established; geometrical and physical optics could be understood in terms of electromagnetic waves; and the conservation laws for energy and momentum (and mass) were widely accepted. So profound were these and other developments that it was generally accepted that all the important laws of physics had been discovered and that, henceforth, research would be concerned with clearing up minor problems and particularly with improvements of method and measurement. However, around 1900 serious doubts arose about the completeness of the classical theories—the triumph of Maxwell's theories, for example, was undermined by inadequacies that had already begun to appear—and their inability to explain certain physical phenomena, such as the energy distribution in blackbody radiation and the photoelectric effect, while some of the theoretical formulations led to paradoxes when pushed to the limit. Prominent physicists such as Hendrik Lorentz, Emil Cohn, Ernst Wiechert and Wilhelm Wien believed that some modification of Maxwell's equations might provide the basis for all physical laws. These shortcomings of classical physics were never to be resolved and new ideas were required. At the beginning of the 20th century a major revolution shook the world of physics, which led to a new era, generally referred to as modern physics.[60] ###Radiation experiments In the 19th century, experimenters began to detect unexpected forms of radiation: Wilhelm Röntgen caused a sensation with his discovery of X-rays in 1895; in 1896 Henri Becquerel discovered that certain kinds of matter emit radiation on their own accord. In 1897, J. J. Thomson discovered the electron, and new radioactive elements found by Marie and Pierre Curie raised questions about the supposedly indestructible atom and the nature of matter. Marie and Pierre coined the term "radioactivity" to describe this property of matter, and isolated the radioactive elements radium and polonium. Ernest Rutherford and Frederick Soddy identified two of Becquerel's forms of radiation with electrons and the element helium. Rutherford identified and named two types of radioactivity and in 1911 interpreted experimental evidence as showing that the atom consists of a dense, positively charged nucleus surrounded by negatively charged electrons. Classical theory, however, predicted that this structure should be unstable. Classical theory had also failed to explain successfully two other experimental results that appeared in the late 19th century. One of these was the demonstration by Albert A. Michelson and Edward W. Morley—known as the Michelson–Morley experiment—which showed there did not seem to be a preferred frame of reference, at rest with respect to the hypothetical luminiferous ether, for describing electromagnetic phenomena. Studies of radiation and radioactive decay continued to be a preeminent focus for physical and chemical research through the 1930s, when the discovery of nuclear fission opened the way to the practical exploitation of what came to be called "atomic" energy. ##Conclusion ###Seminal physics publications *** |**Author**|**Dates**|**Contribution**| | :--------------------------------| --------------------------------: | :-------------------------------- :| | Aristotle |384 – 322 BCE |Physicae Auscultationes | | Archimedes |287 – 212 BCE |On Floating Bodies | | Ptolemy |90 – 168 |Almagest,Geographia,Apotelesmatika | | Aryabhatta |476 – 550 |Āryabhaṭīya | | Alhazen |965 – 1040 |Book of Optics | |Copernicus |1473 – 1543 |On the Revolutions of the Celestial Spheres | |Galilei |1564 – 1642 |Dialogue Concerning the Two Chief World Systems | |Descartes |1596 – 1650 |Meditations on First Philosophy | |Newton |1643 – 1727 |Philosophiæ Naturalis Principia Mathematica | |Faraday |1791 – 1867 |Experimental Researches in Electricity | |Maxwell |1831 – 1879 |A Treatise on Electricity and Magnetism | *** ##Acknowledgements We acknowldge coping of text verbatim from Wikipedia and other sources to prepare this mansucript. ##References 1. "This shift from ecclesiastical reasoning to scientific reasoning marked the beginning of scientific methodology." Singer, C., A Short History of Science to the 19th Century, Streeter Press, 2008, p. 35. 2. "This shift from ecclesiastical reasoning to scientific reasoning marked the beginning of scientific methodology." Singer, C., A Short History of Science to the 19th Century, Streeter Press, 2008, p. 35. 3. Oliver Leaman, Key Concepts in Eastern Philosophy. Routledge, 1999, page 269. 4. Chattopadhyaya 1986, pp. 169–70 5. Radhakrishnan 2006, p. 202 6. (Stcherbatsky 1962 (1930). Vol. 1. P. 19) 7. Li Shu-hua, "Origine de la Boussole 11. Aimant et Boussole", Isis, Vol. 45, No. 2. (Jul., 1954), p.175 8. Joseph Needham, Volume 4, Part 1, 98. 9. Robinson, Francis, ed. (1996). The Cambridge Illustrated History of the Islamic World. Cambridge University Press. pp. 228–229. 10. Glick, Livesey & Wallis (2005, pp. 89–90) 11. Jim Al-Khalili (4 January 2009). "The 'first true scientist'". BBC News. 12. Tracey Tokuhama-Espinosa (2010). Mind, Brain, and Education Science: A Comprehensive Guide to the New Brain-Based Teaching. W.W. Norton & Company. p. 39. ISBN 978-0-393-70607-9. Alhazen (or Al-Haytham; 965–1039) was perhaps one of the greatest physicists of all times and a product of the Islamic Golden Age or Islamic Renaissance (7th–13th centuries). He made significant contributions to anatomy, astronomy, engineering, mathematics, medicine, ophthalmology, philosophy, physics, psychology, and visual perception and is primarily attributed as the inventor of the scientific method, for which author Bradley Steffens (2006) describes him as the "first scientist". 13. El-Bizri, Nader (2005). "A Philosophical Perspective on Alhazen's Optics". Arabic Sciences and Philosophy (Cambridge University Press). 15 (2): 189–218. doi:10.1017/S0957423905000172. 14. Sardar, Ziauddin (1998), "Science in Islamic philosophy", Islamic Philosophy, Routledge Encyclopedia of Philosophy, retrieved 2008-02-03 15. Glick, Thomas F.; Livesey, Steven John; Wallis, Faith (2005), Medieval Science, Technology, and Medicine: An Encyclopedia, Routledge, pp. 89–90, ISBN 0-415-96930-1 16. Espinoza, Fernando (2005). "An analysis of the historical development of ideas about motion and its implications for teaching". Physics Education. 40 (2): 141. Bibcode:2005PhyEd..40..139E. doi:10.1088/0031-9120/40/2/002. 17. Seyyed Hossein Nasr & Mehdi Amin Razavi (1996). The Islamic intellectual tradition in Persia. Routledge. p. 72. ISBN 978-0-7007-0314-2. 18. Aydin Sayili (1987). "Ibn Sīnā and Buridan on the Motion of the Projectile". Annals of the New York Academy of Sciences. 500 (1): 477–482. Bibcode:1987NYASA.500..477S. doi:10.1111/j.1749-6632.1987.tb37219.x. 19. Espinoza, Fernando. "An Analysis of the Historical Development of Ideas About Motion and its Implications for Teaching". Physics Education. Vol. 40(2). 20. Sayili, Aydin. "Ibn Sina and Buridan on the Motion the Projectile". Annals of the New York Academy of Sciences vol. 500(1). p.477-482. 21. Jump up to:a b Gutman, Oliver (2003). Pseudo-Avicenna, Liber Celi Et Mundi: A Critical Edition. Brill Publishers. p. 193. ISBN 90-04-13228-7. 22. Crombie, Alistair Cameron, Augustine to Galileo 2, p. 67. 23. Pines, Shlomo (1970). "Abu'l-Barakāt al-Baghdādī , Hibat Allah". Dictionary of Scientific Biography. 1. New York: Charles Scribner's Sons. pp. 26–28. ISBN 0-684-10114-9.  (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4), p. 521-546 [528].) 24. Franco, Abel B.. "Avempace, Projectile Motion, and Impetus Theory". Journal of the History of Ideas. Vol. 64(4): 543. 25. Jump up to:a b Gracia, Jorge J. E. (2007-11-26), "Philosophy in the Middle Ages: An Introduction", A Companion to Philosophy in the Middle Ages, Blackwell Publishing Ltd, pp. 1–11, doi:10.1002/9780470996669.ch1, ISBN 9780470996669 26. "Top 10 ancient Arabic scientists". COSMOS magazine. 2011-01-06. Retrieved 2013-04-20. 27. Alistair C. Crombie, "Quantification in medieval physics." Isis (1961): 143-160. in JSTOR 28. David C. Lindberg, and Elspeth Whitney, eds., The beginnings of Western science: The European scientific tradition in philosophical, religious, and institutional context, 600 BC to AD 1450 (University of Chicago Press, 1992) 29. Singer, Charles (1941), A Short History of Science to the Nineteenth Century, Clarendon Press, page 217. 30. Weidhorn, Manfred (2005), The Person of the Millennium: The Unique Impact of Galileo on World History, iUniverse, p. 155, ISBN 0-595-36877-8 31. Finocchiaro (2007). 32. Stephen Hawking, "Galileo and the Birth of Modern Science", American Heritage's Invention & Technology, Vol. 24, No. 1 (Spring 2009), p. 36. 33. Drake (1978) 34. Biagioli (1993) 35. Shea (1991) 36. Garber (1992) 37. Gaukroger (2002) 38. Hall (1980) 39. Bertolini Meli (1993) 40. Jump up to:a b Guicciardini (1999) 41. Raymond N. Wilson (2013). "1.1 Period 1608-1672". Reflecting Telescope Optics I: Basic Design Theory and its Historical Development. Springer. pp. 1–10. ISBN 978-3-662-03227-5. 42. Błaszczyk, Piotr; Katz, Mikhail; Sherry, David (2012), "Ten misconceptions from the history of analysis and their debunking", Foundations of Science, 18: 43–74, arXiv:1202.4153, Bibcode:2012arXiv1202.4153B, doi:10.1007/s10699-012-9285-8 43. New Experiments physico-mechanicall, Touching the Spring of the Air and its Effects (1660). [1] 44. Darrigol (2005) 45. Bos (1980) 46. Heilbron (1979) 47. Buchwald (1989) 48. Golinski (1999) 49. Greenberg (1986) 50. Guicciardini (1989) 51. Garber (1999) 52. Ben-Chaim (2004) 53. Buchwald (1985) 54. JungnickelMcCormmach (1986) 55. Hunt (1991) 56. Buchwald (1994) 57. Michael Windelspecht, Groundbreaking Scientific Experiments, Inventions, and Discoveries of the 19th Century, Greenwood Publishing Group, 2003 page 195 58. Smith & Wise (1989) 59. Smith (1998) 60. Agar (2012)